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Analysis of a Composite Double Cantilever Beam with Stitched 
Reinforcements Under Mixed Mode Loading" Formulation (I) 
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Several methods for improving the lnterlammar strength and fracture toughness of composite 

materials are developed Through-the-thickness sntchmg is considered one of the most common 

ways to prevent delammatmn Sntchmg s~gmficantly increases the Mode I fracture toughness 

and moderately improves the Mode 11 fracture toughness An analyncal model has been 

developed for simulating the behavior of stitched double cantilever beam specimen under 

various loading conditions For z-dl rectmnal  load and moment about ttle y-axis  the nttmencal 

solutions are compared with the exact solutions The derived formulation shows good accuracy 

when the relatwe error of d~splacement and rotation between numerical and exact solution were 

calculated Thus we can use the present model with confidence in analyzing other problems 

mvolwng stitched beams 

Key Words : Composite Double Cantilever Beam, SUtched Reinforcement, 

Mixed Mode Loading, Analytical Modelhng 

Nomenclature  
As' Cross-sectmnal area of the stitch yarn 

A~, Cross-sectional area of beam 

b Beam width 

c The length of  bridging zone 

E Equivalent Young's modulus of  beam 

Es Young's modulus of the stitch material 

G Equivalent shear modulus of  beam 

h~ Height of top beam 

/l  Moment of merUa of beam 

k Spring constant of stitch 

Mt y-d l recnona l  moment at top beam 

N Number of  sntches per unit area 

P~ x-d l reenona l  load at top beam 
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tn ~ direenonal tractmn by stitch 

ts x-direct ional  tracnon by stitch 

ut x-dlrecUonai displacement 

Vt z-direct ional  load at top beam 

wt" z-dlrecuonal  y-displacement  

~ . Rotation about y-ax~s 

The subscript t indicates the top beam property 

and b the bottom beam property 

1. Introduction 

Composite materials are unhzed increasingly 

m industry because of h~gh strength w~th reta- 

nvely low weight Especially, graphite-epoxy la- 

minated composites have very high stiffness and 

strength to weight ratios, which make them very 
attracnve m structural applicauons The orienta- 

tion of the fibers has significant effect on the m 

plane propernes of these materials The strength 

in the thickness dlrectmn, however, is hmlted by 
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the matrix material, and is typically about 5 to 

10% of the strength in the fiber direction. There- 

fore, these materials suffer from poor interlaminar 

properties, and easily delaminate. 

Several methods for improving the interla- 

minar strength and fracture toughness of these 

materials include 3D weaving, Z -p inn ing  and 

stitching. Translaminar reinforcement can be pro- 

vided by inserting pins in the thickness direction 

(z pinning) of the laminate or by stitching the 

layers with suitable yarns before resin impregna- 

tion. Through the thickness stitching is consi- 

dered one of the most common ways to prevent 

delamination. Sankar and Sharma (1995) report 

that stitching significantly increases the Mode I 

fi'aeture toughness and moderately improves the 

Mode 11 fracture toughness. In practical applica- 

tions it is very rare to encounter pure Mode I or 

Mode I] loading conditions, since it is typical to 

have a combination of the two modes. Ridards 

and Korjakin (1998) used the tradit ional  mixed 

mode setup to test the fi+acture toughness of un- 

stitched laminated composites. Reeder and Crews 

(1992) proposed a new mixed-mode bending 

method for delamination testing. This test allows 

a wide range of ratios of Mode I and Mode II 

and has several advantages over the traditional 

methods. Chen, lfju and Sankar (200l) develop- 

ed new methodology and testing apparatus for 

double cantilever beam test for stitched composite 

laminates. Rugg, Cox and Massabo (2002) inves- 

tigated the mixed mode delamination behavior of 

carbon epoxy laminates by using two different 

test specimens, Other fracture mechanics from 

cracks subjected to mixed mode loading can be 

found. Choi and Chai (2002, in Korea) inves- 

tigated interracial crack initiation and propaga+ 
tion using biaxial loading device for various 

mixed modes. Song and Lee (2003+ in Korea) 

analyzed the propagation behavior of fatigue 

cracks of  cold roiled stainless steel under mixed 

-mode conditions. Although there are several 

approaches for testing of stitched composites, not 

much work has been done in developing analy- 

tical models. Sankar and Dharmapuri  (1998) 

proposed analytical method for stitched DCB 

(double cantilever beam) with Mode I loading 

condition. They found a closed form solution for 

the problem of beam on elastic foundation and 

utilized the model to simulate the DCB test and 

subsequent crack propagation. Chen, Sankar and 

lfju (2003) proposed a new methodology for tes- 

ting mixed mode DCB specimens. The develop- 

ed apparatus is very efficient to apply the mixed 

mode load. They compared the results of experi- 

ments and finite element analysis as well. In this 

study, an analytical approach is proposed for 

stitched DCB under mixed mode loading condi- 

tions. The related differential equations are deriv- 

ed and solved for several loading conditions. The 

numerical results are compared with the exact 

solutions and the accuracy of the numerical solu- 

tion is discussed, 

2. Analytical Model of Stitched 
Double Cantilever Beam 

The problem to be solved is depicted in Fig. 1. 

The Timoshenko beam theory is used to deter- 

mine the deflections and rotations in the stitched 

beam. 
It is assumed that DCB has different heights at 

top and bottom parts. The applied load is re- 

presented as f x ,  x-di rec t ional  load, and Fz, z 

directional load, respectively. The length from 

the end of  beam to the first stitch is defined as 

a. The bridging zone is a region in which there 

exist unbroken stitches in the crack opening. The 

length of bridging zone is defined as c in Fig. 1, 

The shape of stretched stitch is depicted in 

detail in Fig. 2 when mixed mode load is ap- 

plied. The points A and B are coincident before 

Fig. 1 Typical stitched double cantilever beam 
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loading u and w represent x dlrect~onai d~spla- 

cement and Z-dlrecuonal dasplacement, respec- 

tively Therefore, the length of a smch increases 

by AB 

In the p~esent study the stitch is considered as 

a spring with sprmg constant k, which is cal- 

culated as 

k = 2NA~E~ 
h~+h~ (I) 

The factor 2 appears in Eq (1) to account for the 

two bobbm yarns that consmute one through the 

thickness suteh Tracuon due to the stitches m the 

x and z d~rectmns are computed as 

t. = kAw = k (w~ - Wb) 

t s=kAu=k(u~  us) 

The eqmhbnum equauons lnvolwng, the longi- 

tudinal force, shear force and bending moment 

are described using the dtsplacements and spring 

constant of the retch as follows" 

dP~ _ t~b = bk ( ut-- u~) (3) 
dx 

dVt _ t.b = bk ( wt - w~) (4) 
dx 

dM~ h, 
dx - V,---~- bk( m - u ~ )  (5) 

From the laminate constnutwe equatmns we 

can obtain the foltowmg relauons between force 

resultants and displacements 

P t = A t E  dut 
dx 

M, = I~E dr 
dx 

(6) 

(7) 

Fig. 2 D e f o r m a t m n  of  a st i tch unde r  rmxed mode  

load 

{ dw~ + 
V t=A,G \ dx r ) (8) 

Combining (3)-(8) results xn governing equa- 

uons for the top part of the stitched DCB take 

the form, 

A , E  d2ut b k ( u , - u ~ )  = 0  (9) 
d x ~ - -  

d2Pt A dwt h~ EL-57.2 -G ,P~-6A~ .~ +~-bk(ut-ub)=O ( ~0) 
aX ~.~ z 

GAt ~ f f -+  GAt d~wt bk - d f S -  (w , -w~)  o (ll) 

Let us define three snffness constants for the con- 

vemence of representatmn of equatmns 

A , E  
b = B t  axial snffness 

EL 
b = D ~  flexural suffness 

A,G 
b = Q t  shear suffness 

Then the govermng equauons (9 ) - (1 t ) ,  can be 

rewritten using the newly defined stiffness con- 

stants 

d z 
B, ~ . .~ - - k ( . , - .~ )  =o (t2) 

( i x  

d2r  d w ~  , h ,  , , , o 29, ~ 0,#,-0, (13) ~ ) - * T  ntu~-u~) =u 

d~t + ~ - - k ( w t - - w b )  =0 (14) O, --3Z O, ax 

S~mflar equations for the bottom beam can be 

derived as follows 

d~ub ~h [~  

D d2~ ~.,. ~ dw~+hb~:o ~ ~ w - ~ - d x  T ~ , ~ ,  u~):0 (16) a x  

dr + -  d2wb_ 
Qb dx Qb d~xz ~k (w ' - -wb)=O (17) 

It may be noted that the tractions exerted by the 

smehes on the top and bottom are equal and 

opposite, and hence the sign reversal m terms 

containing the stiffness constant km the equations 

for the bottom beam Boundary condmons at the 

ends of the beam are as follows 
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At x = 0  one can apply, in general, an axial 

force, a transverse force and a couple, Therefore, 

the force boundary conditions are 

Pt=AtE flUt =Fx, pb=A~E d~=Fxb 
a x  

d~ t_  . _  dftb C 
Mt=LE~dx - G ,  Mb=2~--dx = b 

(t8) 
E ~ A , G (  dw, + r = F . ,  

\ d x  

G---AbG ( - ~ - +  ~b )= F~b 

At x=c  the rigid end boundary condlnons are 

given by 

w~=wt ,=0 ,  C,=,~b=0,  u,--ub=O (19) 

3. Solution Procedure for the 
Governing Equations 

The longitudinal displacements zit and l, tb can 

be found by solving equations (12) and (15) 

smmltaneously Rearranging (12) and (15) and 

ehmlnatmg u~ wdl result m a 4 t~ order differen- 

tial equation m z~t as 

1 1 (20) 
dx  ~ 

Let us assume solution of the form 

u,=ce a~ (21) 

By subsututmg the solutions from equation (21) 

mto the govetrung equation (20) we obtain the 

solution 

ue=c~+c2x +caea'X+c4e ~x (22) 

where 

and from the relationship between /& and u~ m 

equation (12) 

us =c, + c~x + c~( 1 - - ~  A~ )e a'* 
(23) 

+c,( 1--- FB' ~) e~,~ 

After applying the boundary condmons,  the min- 

nltaneous equations for the unknown constants 

can be represented in a matrix form 

1 C e qc e hc ca 

The x-di rec t ional  displacement (22) and (23) 

can be obtained by solving the above simulta- 

neous equations 

By differentiating (14) and (17) with respect to 

x and ehmmatmg wt and wb, we can obtain the 

coupled differential equauons for Ot and Pb 

. . . . . .  /Dr ,. Db ~[,.'~+k(r D *Vt - -R~  ~'- grt ----~-- 
' ~  t t,d b (25) 

k'[ht hb~,  , h e . ,  . ,,, 
= T \ ~ - - ~  ] v u , -  u~j - - 2  ,e~u, - u , j  

Dbd4'"+k(-~ # -  ~: ~; ' ) -k(P,-~)  
(26) 

k 2[h, hb\, _hi  U " 
=-TkV--O~)~u, .,) ~.,-u"'.~ 

Let us assume the solutions of the equations (25) 

and (26) as 

(h=pe ~*, ~-b~qe ~x (27) 

If we substttute the equation (27) into equanons 

(25) and (26) we obtain the following simulta- 

neous equation for finding p and q 

where Rt  and Rb represent non-homogeneous 

terms For the gpeetfie ~ ,  the ratio os eoefflelentg 

p, and q, is computed as 

D 4 .Dr  ,a, x - ~  d + k  
r,=q' (29) 

To make the problem sm~ple let us assume that 

the cross seetmns of bottom and upper beams are 

identical Then, the snffness constants become 

De = D ~ - - D ,  Q, = Ob = O 

Copyright (C) 2005 NuriMedia Co., Ltd. 



Analysis of a Composae Double Cantdever Beam with Stttehed Reinforcements Under Mtxed Mode �9 571 

For  the homogenous solutions we can obtain 

the roots of characteristic equation 

sis,a,.=0 (30) 

a~'~'r's=-al Q - V  \ Q - ]  D 

Homogeneous solutions for !kt and ~k~ can be 

expiessed as 

4 8 

~kn,=~_~p,x ' - l+ ~=J),e a'x (32) 

4 8 

The general solutions for ~kt and ~& become 

r = #m + gae<Z+ E4e a~x 
4 8 

= ~p~x  ,-~ + ~#,e~ ,~+g3ea,X+&e*~ 

4 8 

= 52 r,P,x' ~ + ~ r ,p ,e~*+ haea'~+ h4e a~x 
~=L t~5 

(34) 

where the coefficJents g and h can be obtained 

by applying the pamcular  parts m equatmn (28) 

The constants ga and ha can be calculated using 

equatmns (35) and (36) shown below, which are 

derived from (25) and (26) by substituting the 

pamcular  solutions, ~w~=gae a~, r a,~, 
and the particular funcnons, tAtmCae &x, IA~,= 

4 D 2 D 2 hB 4 

Q O 

D 2 ~ D 2 hB 4 ( - -kA-k )ga+(D/ l l - - -k21+k)h~=--7-cv t l  (36) 
O 0 

Similar procedures may be used to obtain g4 and 

h~ 
We need eaght boundary condmons to deter- 

mine p,, z:= 1, .,., 8 They correspond to (18) and 
(19) at the two ends of the top and bottom 

beams, The expressmn for w, and wb that Include 

unknowns b,, ~ - I ,  ..., 8 can be obtained by 

subsmutmg (34) into equatmns (13) and (t6) 

w t = ( ~ - N -  b,) I 6D z +T( ~-  l),-l~ ) x~ 
1 s 

3 = 

t h 

(37) 

~./)b = ( 2~ ~__pl) ..~ I [ 6D \ 2 
x TI-Vb,- )x 

1 8 
3 = / d ' ,  

+ ( ~ / l ~ _ l ) h a  a,x+[D ,2 l\h4ea,X 

i h 
+ T  --O B (cd,# ,~ + c, ke ~ ) 

(38) 

By applying the eight boundary condihons relat- 

ed to rotation and transverse dmplacements we 

obtain a set of linear equauons in the coefficients 

P, which are given m Appendix I Once the 

coefficaents are determined, the soJutton of the 

problem depicted in Fig 2 as obtained Deriving 

the expressions for the deflecuon curve, stitch 

elongation and energy release rate at the crack 

tip, calculating shear force and bending moment 

resultants, at any cross section are matter of str- 

aightforward computatmn and are d~scussed in 

the tbllowmg section 

4. Numerica l  
Results  and Discuss ion 

Graphne/epoxy is selected as the beam mater> 

al and Kevlar| is the stitch material for the 

present analysis The beam is assumed to be 7 

inches long and 0 71 inch wide, stitched with 1600 

denier Kevlar yarn with two yarns m each stitch 

sntch density is 4 •  means that there are The 

20 stJtches per square inch, where the pitch 1s 

1/4 inch and the spacing between two adjacent 

stttch rows is 1/5 inch Fol  slmphclty we constder 

that the depth of top beam is equal to that of 

bottom beam The mechamcal properties of  the 
beam and Ml[ch mate r i a l s  are summattzed in 

Tables I and 2, respectively 

To vahdate the formulation deNved here we 

compare the displacements calculated from this 
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procedure with the exact solution (Young, 1989). 

The bridging zone of  stitched DCB under loads 

is considered as a finite length beam on elastic 

foundation subjected to transverse forces and ben- 

ding moment. The stiffness of elastic foundation 
is equivalent to the spring constant calculated in 
equation (1). The exact solutions are expressed in 

analytical form, and are shown in Appendix II. 

The example problem is to analyze a part of 

DCB with stitch reinforcement under z direc- 

tional load or moment about y-axis,  which are 

depicted in Fig, 1, We confine the analyzed region 

within bridging zone of the beam. The length of  

bridging zone, which is denoted by c, is taken as 

1 inch. 
Numerical and analytical results of z direc- 

tion displacement are shown in Fig. 3 for applied 
z~directional loads, which are F , o = 5 0 0 0 N  and 
F** = - 5 0 0 0  N. It is very difficult to differentiate 

Table 1 Mechanical properties of beam 

E~(psi) E2(~psi) ~]l ~. Gzz(psi)]G,a(psi) G,a(psi) 

Table 2 Mechanical properties of stitch 

- -  ~ Tensile ] modulusElastic 
Material strength (GPa) I (GPa) 

 eviar-11.441 f30 

xlO: 3 

25  

15 

- 0  "~0 " 

Fig. 3 

<\ 

~,.,. 

Comparison of z-direction displacement For 
applied load (solid : numerical, dotted �9 
analytical) 

the numerical result from the analytical one in 

Fig. 3 because the two results have almost same 

value. We introduce the relative error,  the differ- 
etice between numerical solution and the exact 
one divided by the largest displacement, to evalu- 
ate the accuracy of the numerical result. It can be 

noted from Fig. 4 that the present method is very 

accurate with a maximum error of 1.49/oo. 

The rotation of beam due to the applied z -  

directional lbrce is shown in Fig. 5. The relative 

error, rotation difference divided by the largest 

rotation, shows high accuracy (max. 0.7%) as 

well in Fig.& 
In Fig. 7 through 10, displacements, rotation 

and related relative error for applied moments 

14 

12  

I( '  : 

6 

4 

4: 

v4 

. .  . _ .  

c~slar~ 

Fig. 4 Relative z direction displacement error for 
applied toad 

0 #35" 

00S  " "  

0 025 �9 '% 
', 

oo~ '\ 

-0 005 
0 eCO9 00 t  

Fig. 5 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . .  : 

gOl ,  �9 

0 e l  5 ~ 02 0025 a 03 

Comparison of rotation for applied load 
(solid : numerical, dotted : analytical) 
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f.., 

L 

IFig. 6 Relative rotation error to, applied load 

s e'-" 

9 O2.: 

( . ) ; "  

~" OO!." 

C 2,' 

o ; : .5  

5 

g 9:." 5 

, + ' ! ?  

Fig, 7 

� 9  

:x o.'.~ ~ ,71 : ; :% ,3 02 ,; 3 : 5  {~ % 

Comparison of z-direction displacement t'~r 

applied moment (solid : numerical, dotted : 

analytical) 

are shown. The applied moments  are C~ = - 5 0 0 0  

N "m and C ~ , - 5 0 0 0  N . m .  From accuracy point o f  

view these results represent almost same trend as 

the cases of  applied transverse load. 

From the results above, the present formula- 

tion for stitched beams is accurate enough to be 

util ized to calculate the displacements for wtrious 

load conditions+ 

We may classify the type of  load in the DCB by 

the fracture Mode�9 Mode 1 case is wherein the 

applied loads are symmetrical about the plane of  

delaminat ion and the crack tip is under Mode I 

fracture condition.  In this mode  the applied load 

is i t ;  the positive z direction o n  the upper beam 

and negative z - d h e c t i o n  on the lower beam as 

1 2  

~0 

s, 

2 

0 

�9 2 c 

Fig. 9 

O r 0 " 3 -15  ::, 2 ~ 025 ,? o~ 

Compa,'ison of rotation for applied moment 

(solid: numerical, dotted : analytical) 

4 

2 

14 

~2 

lC 

? .  

-3 

4 

0 

�9 55 0 CO'~ O . "  9 , : : !5  0 { 2  r  ,~ :'a 

' 5  
Fig. 8 Relative z direction displacemem error tbr 

applied moment Fig. 10 
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shown in Fig. 1. The applied loads are F ~  = 5000 

N and Fzt------5000 N. Displacement and rota- 

tion for Mode I are shown in Fig. 11. There is 

no x-directional displacement because only F 

load, which is depicted in Fig. 1, is applied. The 

displacement in the z-direction and rotation are 

shown in Figs. 12 and 13, respectively. The defor- 

mations of  the top and bottom parts are symmet- 

ric because the heights of top and bottom beam 
are equal. 

In Mode II the loads are antisymmetric and 

the crack tip is under Mode II condition. The 

applied loads for Mode II are F x ~ - 5 0 0 0  N and 

Fx~=-5000 N. The x-directional displacement 

0.~4 

0.I]2 �9 

001 

o . . . . . . . . . . . . . . . . . .  . ....': ::: . . . . . . . . . . . .  - - =  . . . . . . . . .  

0.01" ," 

Fig, 13 Rotat ion for Mode  [ 

(solid : top, dotted : bottom) 

06 

0~. 

o 0 ....................................................................................................................... : 

- 0 4  

~0 ~ . . . . . . .  

. 05 ,  

0 0 005 001 0015 002 002~ 0 O~ 
distance 

Fig. 11 x-direct ion  displacement for Mode I 

(solid : top, dotted : bottom) 

k10 s 
2 5 ,  

. . , . ,  
, , .  

1L 

[ 
-1[ 

d ~ 

�9 . . . . .  

" " . . . . . . .  

�9 �9149149 :> :  
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O 0 ~ 5  0 01 0 015 0 02  0 0 2 5  0 . 0 3  

dI~ESNe 

Fig. 14 x-direct ion  displacement for Mode II 

(solid : top, dotted : bottom 

x l 0  ~ 

}, I 
i , 

-I I ./ 

i / 
i / 

2! , 
" 

Fig. 12 z-direct ion displacement for Mode  1 

(solid : top, dotted : bottom) 
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8 02 

-II (.~ 

�9 6 I n eoo~ o 6 '  0 0 i 5  a~:2 6 0 2 5  o e S  

Fig, 16 Rotation for Mode li 
(solid : top. dotted: bottom) 

almost linearly decreases with respect to x as 

shown in Fig. 14. However, transverse deflection 

and rotation are of higher order in x, and top 

and bottom parts show identical trend as shown 

in Figs. 15 and 16, The stitches have an effect on 

the ,e-direction displacements although there is 

only :c-directional applied load. 

The results for mixed mode loading, combina- 

tion of Mode I and Mode II, can be obtained by 

superposition. 

5. Conclusion 

An analytical model has been developed for 

simulating the behavior of stitched double can- 

tilever beam specimen under various loading 

conditions. For z-directional load and moment 

about the y-axis the numerical solutions are com- 

pared with the exact solutions, The stitched beam 

is considered as a finite length beam on elastic 

foundation when we try to find exact solutions 

of the problem. The derived formulation shows 

good accuracy when the relative error of dis- 

placement and rotation between numerical and 

exact solution were calculated. Thus we can use 

the present model with confidence in analyzing 

otlte~ problems involving stitched beams. The 

calculations have been carried out for two differ- 

ent load conditions. Three kinds of displacement, 

x and z-directional displacements and rotation 

about the y-axis, are obtained for each mode. 

Mode I is the case where the applied toad is 

symmetric. There is no x-directlonal displaceme- 

nt because of only z--direction load. The dis- 

placement in the z direction and rotation are 

symmetrical shape because of the symmetry of the 

top and bottom beams. 

When a positive axial load (in the + x  direc- 

tion) is applied on the lower beam and a negative 

load (in the - -x  direction) load is applied on 

the upper beam the condition becomes Mode II. 

The x directional displacement almost linearly 

decreases. However, only x-directlonal displace- 

ment is symmetric and linear in the Mode I1 con- 

dition. The z-direction displacement and rotation 

behavior of top and bottom beam is equal in the 

Mode lI. The results for mixed mode conditions 

can be obtained by superposition. The methods 

described in this paper can be easily extended to 

other loading conditions such as applied end 

couple. After the displacements are calculated, the 

forces in the stitches can be determined from Eqs. 

(6 8), and can be used to find the load at which 

the stitch will break. Calculation of energy release 

rate at the crack tip and estimating the bridging 

length etc. will be the topic of future work and 

they will be discussed in a sequel to this paper, 

The method developed in this paper will be usefhl 

in analyzing progressive damage in stitched com- 

posite beams and in estimating their apparent 

fracture toughness. 
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Appendix I 

The matrix form of hnear equatmn m p. 

A P = B  

where 

A= 

2D -1 0 
0 

2D -1 0 Q 
0 1 0 

0 1 0 0 rsc~ 

l c d d e ~ 

1 c c 2 d n e  "~ 

1 ~2Dc c~ 3Dc~ c4 ( ~  ) e  ~'~ 
- C - y C  O 3 Q 4 d - !  

t 2Dc cS 3Dcz c*(D ] r J  'c 
- c - y c  O 3 Q 4 d - I  c~ 

F~ 
Q 

F~ 
Q 

g =  

D D D D 
O ~ rscg ~ r,a~ -~ rTd -~ r~d~ 

r6og 
ea, c 

ruea~ c 

1 h 2 2 

D 2 2 1 h 
O (,~lh~+,~h~) - - ~  Q- B (e~l~4-e~)~) 

C, 
D g3A~-gaA2 

Co h~A- h4,~ 
D 

--g3Caac--g4~a~c 

--h~eh r h~eZ: c 

. . . . .  
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eat c eaoe 

yve a~ r~ea~ e 

1 h B(CaAle~+c4Aze~,~) 2 Q  

1 h B (c3~e ~'~ + c ~ e ~ )  
2 Q  
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Appendix II 

The analytical solutlons of deflection and rota- 
tion for z dtrecuonal load F are expressed as 
follows 

ua-ya~- cosh/~x cos 3x 

+ ~;-(cosh/~x sm/?x +smh Bx cos 
i 

F (cosh ~qx sm/~x-smh 3x cos/~x) 
4EIB ~ 

# -  ~,~ cash b'x cos ~x 
- y ~ 3  (cosh/~x sm $x-slnh Bx cos 5x) 

F 
- 4E i~ smh  [3x sin/3x 

where 

F G G - G G  
ya~ 2E13 a 2 AC Cll 

F 2C, C3+C,C, 
~AF 2EI~ ~ 2 + C ~  

The analytmal solutmns of deflecuon and rota- 
non for apphed moment M are expressed as 

follows 

w~=y~ cosh/~x cos ~x 

+ 2-2-2-~(cosh/~x sin ~x +smh/~x cos/~x) 

M 
+ 2 ~ s l n h  Sx sm fix 

~,= #~ cosh ~x cos ~x 
-yauC?(cosh/3x sin r cos 3x) 

M 
+x-~.~ (cosh ~?x sin r fix cos ~x) 

ZP_.,/# 

where 

M 2C~C3-C2C~ 
YaU-2Elfl2 2 + C u  

M CzC~+C, C3 
EIt~ 2+ Cn 

boko v, 

Cl=COsh ~l cos/~l 
C2=cosh fiZ sm H +sinh 31 cos/31 
C~ =smla .81 sm ~l 
C,=cosh/~l  s in /~1-smh Bl cos r 
C~1 =slnl9/31-sin ~flt 
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